关键特征
● 采用专业进口电源,纹波更低、更加稳定可靠,有效延长光源使用寿命;
● 非金属灯箱,很大程度避免实验室电气使用安全风险;
● 结构紧凑,体积小,对实验空间的需求减小;
● 专利轴向吸风式散热结构,保证灯箱的有效散热(专利号:201320740323.5)。
应用领域 ▲特别适用 ●较为适用 ○可以使用
▲ 光催化分解水制氢/氧 ▲ 光催化全分解水 ▲ 光催化co2还原
● 光降解气体污染物(如vocs 、甲醛、氮氧化物、硫氧化物等)
● 光降解液体污染物(如染料、苯及苯系物等)
○ pec光电化学 ○ 光致变色 ○ 光合成 ○ 膜光催化
光输出特性
● 总光功率:50 w
● 光谱范围:320~780 nm(可拓展至320~2500 nm)
● 配合滤光片:紫外光区,可见光区,近红外光及窄带光
● 光源发射角:平均6°
● 光斑直径:30 mm~60 mm(依照射距离)
光源稳定性
● 长周期辐照不稳定性:≤±3%;
● 基于微型cpu的集中数字化供电管理控制方式(软件控制);
控制方式
● 工作模式:程控模式;
● 电流:21 a
● 灯泡(耗材)使用寿命:>1000 h(满足光催化正常条件下的光强度要求)
● 触发方式:一体式高压触发(二级电压且无高压传输);
基础参数
● 灯泡功率:300 w
● 功率调整范围:150 w~300 w;
● 电源纹波:200 mvp-p(峰-峰值)led数字电流显示;
代表文献
[1] wang zhuangzhuang, zhang gaoke. carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants:boosted charge separation, dft calculations and mechanism unveiling. chemical engineering journal, 2021, 418: 129460.
[2] ji jiahui, xing mingyang. tuning redox reactions via defects on cos2-xfor sustainable degradation of organic pollutants. angewandte chemie international edition, 2021, 60:2903-2908.
[3]li jun. interfacial engineering of bi19br3s27 nanowires promotes metallic photocatalytic co2 reduction activity under near-infrared light irradiation. journal of the american chemical society, 2021, 143: 6551-6559.
[4] liu chao, yu chengzhong. ternary mof-on-mof heterostructures with controllable architectural and compositional complexity via multiple selective assembly. nature communications, 2020, 11: 4971.
[5] ning xingming, lu xiaoquan. plasmon‐enhanced charge separation and surface reactions based on ag‐loaded transition‐metal hydroxide for photoelectrochemical water oxidation. advanced energy materials, 2021, 11: 2100405.
[6] pan jinbo, yin shuangfeng. activity and stability boosting of an oxygen-vacancy-rich bivo4 photoanode by nife-mofs thin layer for water oxidation. angewandte chemie international editionl, 2021, 60: 1433-1440.
[7] wang jigeng, zhao yufei. highly selective photo-hydroxylation of phenol using ultrathin nife-layered double hydroxide nanosheets under visible-light up to 550 nm. green chemistry, 2020, 22: 8604-8613.
[8] xiao kemeng, wong pokeung. wong po keung. interfacing iodine-doped hydrothermally carbonized carbon with escherichia coli through an“add-on” mode for enhanced light-driven hydrogen production. advanced energy materials, 2021, 11: 2100291.
[9] zong, xupeng, sun zaicheng. constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation. applied catalysis b: environmental, 2021, 291: 120099.
[10] j. yuan, x. yi, y. tang, et al., efficient photocatalytic nitrogen fixation: enhanced polarization, activation, and cleavage by asymmetrical electron donation to nn bond, advanced functional materials, 2019, 30, 1906983.
[11] s. chen, z. sun, w. xiang, et al., plasmonic wooden flower for highly efficient solar vapor generation, nano energy, 2020, 76, 104998.
[12] y. song, h. wang, z. wang, et al., selective photocatalytic synthesis of haloanilines from halonitrobenzenes over multifunctional aupt/monolayer titanate nanosheet, acs catalysis, 2018, 8, 9656-9664.
[13] ming-yu qi, yue-hua li, masakazu anpo, zi-rong tang, and yi-jun xu*,efficient photoredox-mediated c–c coupling organic synthesis andhydrogen production over engineered semiconductor quantum dots, acs catalysis, 2020, 10, 14327–14335.
[14] jin-bo pan,bing-hao wang,jin-bo wang,hong-zhi ding,wei zhou,xuan liu,jin-rong zhang,dr. sheng shen,dr. jun-kang guo,dr. lang chen,prof. dr. chak-tong au,prof. dr. li-long jiang,prof. dr. shuang-feng yin,activity and stability boosting of an oxygen-vacancy-rich bivo4 photoanode by nife-mofs thin layer for water oxidation,angewandte chemie international edition, doi: 10.1002/anie.202012550.
[15] jikang wang, yanqi xu, jiaxin li, xiaodong ma, si-min xu, rui gao, yufei zhao * and yu-fei song.* highly selective photo-hydroxylation of phenol using ultrathin nife-layered double hydroxide nanosheets under visible-light up to 550 nm. green chem., 2020, doi: 10.1039/d0gc02786c.
[16] wei bi, et al, revealing the sudden alternation in pt@h-bn nanoreactors for nearly 100% co2-to-ch4 photoreduction, adv. funct. mater. 2021
[17] liu c, mao s, wang h, et al. peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2d/2d wo3/biobr s-scheme heterojunction[j]. chemical engineering journal, 2022, 430: 132806.
[18] yang, lang, et al. "photo-thermal synergy for boosting photo-fenton activity with rgo-znfe2o4: novel photo-activation process and mechanism toward environment remediation." applied catalysis b: environmental 292 (2021): 120198.
[19] liu qiong., zhai di., xiao zhida., tang chen., sun qiwei., luo hang., zhang dou. piezo-photoelectronic coupling effect of batio3@tio2 nanowires for highly concentrated dye degradation. nano energy. 2022; 92.
[20] shanshanliu, heyuanliu, lishen, zuoxuxiao, yujiahu,junzhou, xiangyangwang, zhaobinliu, zhili, xiyouli, applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity,chemical engineering journal,10.1016/j.cej.2021.133377
[21] jin ye, jiating xu, chunsheng li, et al. novel n-black in2o3-x/invo4 heterojunction for efficient photocatalytic fixation: synergistic effect of exposed (321) facet and oxygen vacancy, journal of materials chemistry a, 2021, 9, 24600-24612.
[22] qian dong, zhiwu chen, bo zhao,yizeng zhang, zhenya lu, xin wang, jinliang li, wei chen. in situ fabrication of niobium pentoxide/graphitic carbon nitride type-ii heterojunctions for enhanced photocatalytic hydrogen evolution reaction, journal of colloid and interface science, 608 (2022) 1951–1959.
[23] zhiwen wang, huan wang, ling wu, et. al. cupd alloy decorated snnb2o6 nanosheets as a multifunctional photocatalyst for semihydrogenation of phenylacetylene under visible light. chemical engineering journal, 2021, 429, 132018.
[24] cooperative hydrogen production and c−c coupling organic synthesis in one photoredox cycle applied catalysis b: environmental 2021, 120812.
[25] yingzhang shi, huan wang, zhiwen wang, cheng liu, mingchuang shen, taikang wu, ling wu*,surface functionalized pt/snnb2o6 nanosheets for visible-light-driven the precise hydrogenation of furfural to furfuryl alcohol. journal of energy chemistry 2022, 66, 566–575.
[26] liu c, mao s, shi m, et al. peroxymonosulfate activation through 2d/2d z-scheme coal-ldh/biobr photocatalyst under visible light for ciprofloxacin degradation [j]. journal of hazardous materials, 2021, 420:126613.
[27] wang c, liu n, et al. fluoro-substituted covalent organic framework particles anchored on tio2 nanotube arrays for photoelectrochemical determination of dopamine. acs appl. nano mater. 2021.
[28] zhenhua li, xin zhang, jinjia liu, run shi,* geoffrey i.n. waterhouse, xiao-dong wen, and tierui zhang*. titania-supported ni2p/ni catalysts for selective solar-driven co hydrogenation.
[29] rongdi tang, daoxin gong, yaocheng deng, sheng xiong, jiangfu zheng, ling li, zhanpeng zhou, long su, jia zhao,π-π stacking derived from graphene-like biochar/g-c3n4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation,journal of hazardous materials,10.1016/j.jhazmat.2021.126944
[30] jin ye, jiating xu, et. al, efficient photocatalytic reduction of co2 by a rhenium-doped tio2-x/sno2 inverse opal s-scheme heterostructure assisted by the slow-phonon effect. separation and purification technology, 277, 2021, 119431
[31] r. tang, d. gong, y. deng, s. xiong, j. deng et. al. π-π stacked step-scheme pdi/g-c3n4/tio2@ti3c2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation. chem. eng. j. 2022, 427, 131809
[32] chang-long tan, ming-yu qi, zi-rong tang, yi-jun xu, cocatalyst decorated znin2s4 composites for cooperative alcohol conversion and h2evolution, applied catalysis b: environmental, 2021, 298, 120541.
[33] zhao h, li c f, hu z y, et al. size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production. journal of colloid and interface science, 2021, 604: 131-139.
[34] j. shen, l. qian, j. huang, y. guo, z. zhang, enhanced degradation toward levofloxacin under visible light with s-scheme heterojunction in2o3/ag2co3 :internal electric field, dft calculation and degradation mechanism, separation and purification technology 275 (2021).
[35] huang, z.; wan, y.; liang, j.; xiao, y.; li, x.; cui, x.; tian, s.; zhao, q.; li, s.; lee, c.-s. acs applied materials & interfaces 2021.
[36] s. bai, t. li, et al., scale-up synthesis of monolayer layered double hydroxide nanosheetsvia separate nucleation and aging steps method for efficient co2 photoreduction. chem. eng. j., 2021, 419, 129390.
[37] z. huang, j. wei, y. wan, p. li, j. yu, j. dong, s. wang, s. li, c.-s. lee, small, n/a, 2101487.2021, 564, 150432
[38] xi yamin, zhang xingwei, shen yue, et al. aspect ratio dependent photocatalytic enhancement of cspbbr3 in co2 reduction with two-dimensional metal organic framework as a cocatalyst. applied catalysis b: environmental 2021, 297, 120411.
[39] j.l. zhang, h. tao, s. wu, j. yang, m. zhu, enhanced durability of nitric oxide removal on tio2 (p25) under visible light: enabled by the direct z-scheme mechanism and enhanced structure defects through coupling with c3n5, appl. catal. b-environ., 296 (2021) 120372.
[40] dan yin, xingming ning, peiyao du*, dongxu zhang, qi zhang, xiaoquan lu*. cascaded multiple-step hole transfer for enhancing photoelectrochemical water splitting. appl. catal. b: environ. 2021, 296, 120313.
[41] jun li, wenfeng pan, qiaoyun liu*, zhiquan chen, zhijie chen, xuezhen feng, and hong chen*,interfacial engineering of bi19br3s27 nanowires promotes metallic photocatalytic co2 reduction activity under near-infrared light irradiation,j. am. chem. soc. 2021, 143, 17, 6551–6559
[42] hang xie, yanmei zheng, xinli guo, et al. rapid microwave synthesis of mesoporous oxygen-doped g-c3n4 with carbon vacancies for efficient photocatalytic h2o2 production [j]. acs sustainable chemistry & engineering, 2021, 9, 19, 6788–6798.
[43] s.-h. li, m.-y. qi, et. al. modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical co2 reduction. appl. catal., b 2021, 292, 120157.
[44] xuejun ren, meichao gao, yanfeng zhang*, zizhong zhang, xingzhong cao*, baoyi wang, xuxu wang*, photocatalytic reduction of co2 on biox:effect of halogen element type and surface oxygen vacancy mediated mechanism. applied catalysis b: environmental 274 (2020) 119063.
[45] zhenhua li, run shi, jiaqi zhao, and tierui zhang. ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal co2 reduction under flow-type system.nano research 2021.
[46] xingming ning, dan yin, yiping fan, qi zhang, peiyao du,* dongxu zhang, jing chen, and xiaoquan lu*. plasmon-enhanced charge separation and surface reactions based on ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation. adv. energy mater. 2021, 2100405.
[47] hengli qian, guanjie yu, qidong hou et. al. ingenious control of adsorbed oxygen species to construct dual reaction centers photo-fenton catalyst with high-speed electron transmission channel for ppcps degradation. applied catalysis b: environmental, 2021.
[48] zhao h, liu p, wu x, et al. plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3dom tio2-au. applied catalysis b: environmental, 2021: 120055.
[49] yu-xuan tan, lang chen, sheng shen, jun-kang guo, shuang-feng yin et. al. boosted photocatalytic oxidation of toluene into benzaldehyde on cdin2s4-cds: synergetic effect of compact heterojunction and s-vacancy. acs catal 2021, 11, 2492-2503.
[50] changhai lu, xinru li, qian wu, juan li, long wen, ying dai, baibiao huang, baojun li and zaizhu lou*. constructing surface plasmon resonance on bi2wo6 to boost high-selective co2 reduction for methane acs nano 2020, doi.org/10.1021/acsnano.1c00452
[51] syed jalil shah, ruimeng wang, zhu gao, yaseen muhammad, hanzhuo zhang, zhengsheng zhang, zhe chu, zhongxing zhao, zhenxia zhao. il-assisted synthesis of defect-rich polyaniline/nh2-mil-125 nanohybrids with strengthened interfacial contact for ultra-fast photocatalytic degradation of acetaldehyde under high humidity. chemical engineering journal 411 (2021) 128590.
[52]zhiling guan, xiaoming li,you wu; zhuo chen,xiaoding huang, dongbo wang, qi yang, jiale liu, suhong tian, xiyu chen,hui zhao ,agbr nanoparticles decorated 2d/2d go/bi2wo6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride.chemical engineering journal .
[53] renli yin, mingshan zhu et al. peroxydisulfate bridged photocatalysis of covalent triazine framework for carbamazepine degradation. chemical engineering journal 2022, 427, 131613.
[54] z. li, j. hu, z. lou, l. zeng, m. zhu*, molecularly imprinted photoelectrochemical sensor for detecting tetrabromobisphenol a in indoor dust and water, microchimica acta, 2021, 188, 320.
[55] yeran li, xin jin, wei li et. al. biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation. sci. china mater. (2021).
[56] jing wang, ling yuan, chaoqi zhang, shumin li, guozhong wang, jingjing wan, chao liu,* chengzhong yu*, metal-organic frameworks derived titanium oxides via soft interface adaptive transformation, advanced functional materials, 2021, 31, 2107260.
[57] xueying cheng, renquan guan, yunning chen et. al. the unique tio2(b)/biocl0.7i0.3-p z-scheme heterojunction effectively degrades and mineralizes the herbicide fomesafen. chemical engineering journal 2022, 431, 134021.
[58] z.h. liu, m.x. ji, j.z. zhao, y. zhang, x. sun, y.f. shao, h.m. li, s. yin, j.x. xia, dual modulation steering electron reducibility and transfer of bismuth molybdate nanoparticle to boost carbon dioxide photoreduction to carbon monoxide, journal of colloid and interface science.
[59] wang x, wang x, et al. nterfacial engineering improved internal electric field contributing to direct z-scheme-dominated mechanism over cdse/sl-znin2s4/mose₂ heterojunction for efficient photocatalytic hydrogen. chemical engineering journal 431 (2022) 134000
[60] yan-yang li, jun-sheng fan, rong-qing tan, et. al. selective photocatalytic reduction of co2 to ch4 modulated by chloride modification on bi2wo6 nanosheets. acs appl. mater. interfaces 2020, doi: 10.1021/acsami.0c11551.
[61] lei luo, et al. binary au–cu reaction sites decorated zno for selective methane oxidation to c1 oxygenates with nearly 100% selectivity at room temperature. journal of the american chemical society, 2021, 10.1021/jacs.1c09141.
[62] haijiaolu,yi-mingzhao,sandra elizabethsaji,xinmaoyin,arywibowo,chi sintang,shiboxi,pengfeicao,miketebyetekerwa,boruiliu,marcheggen,rafal e.dunin-borkowski,antoniotricoli,andrew t.s.wee,hieu t.nguyen,qing-boyan,zongyouyin,all room-temperature synthesis, n2 photofixation and reactivation over 2d cobalt oxides,applied catalysis b: environmental,2022, 121001
[63] unique insights into photocatalytic vocs oxidation over wo3/carbon dots nanohybrids assisted by water activation and electron transfer at interfaces. journal of hazardous materials, 2021.
[64] lejing li,liangpang xu,zhuofeng hu,jimmy c. yu,enhanced mass transfer of oxygen through a gas–liquid–solid interface for photocatalytic hydrogen peroxide production,advanced functional materials,2021,2106120
[65] chuanwang xing, guiyang yu,* ting chen, shanshan liu, qiqi sun, qi liu, yujia hu, heyuan liu, xiyou li,* perylenetetracarboxylic diimide covalently bonded with mesoporous g-c3n4 to construct direct z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. appl. catal., b, 2021, doi: 10.1016/j.apcatb.2021.120534
[66] x. xu, j. wang, t. chen, n. yang, s. wang, x. ding, h. chen, deep insight into ros mediated direct and hydroxylated dichlorination process for efficient photocatalytic sodium pentachlorophenate mineralization, appl. catal. b- environ., 296 (2021) 120352.
[67] marriage of 2d covalent–organic framework and 3d network as stable solar-thermal stillfor efficient solar steam generation, small methods. 2021, 202100036.
[68] z. z. wang, q. cheng, x. t. wang, j. m. li, w. x. li, y. li, g. k. zhang, carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants:boosted charge separation, dft calculations and mechanism unveiling, chem. eng. j., doi: 10.1016/j.cej.2021.129460.
[69] huining huang, run shi, zhenhua li, jiaqi zhao, chenliang su, and tierui zhang,triphase photocatalytic co2 reduction over silver-decorated titanium oxide at a gas-water boundary,angew. chem. int. ed. 2022, e202200802.